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In the Czochralski process a single crystal is grown from liquid in a crucible. An axial 
magnetic field suppresses turbulence in the melt and thus reduces the density of 
microdefects in the crystal. This paper treats the melt motion due to buoyancy and 
thermocapillarity. The magnitude of this motion decreases roughly like E2, as the 
magnetic field strength B is increased. The separate circulations due to buoyancy and 
thermocapillarity are roughly equal at an early stage of growing a crystal. However 
the circulation due to thermocapillarity is nearly independent of the melt depth, while 
that due to buoyancy is proportional to the square of the depth. Therefore as the 
crystal grows and the melt depth decreases, thermocapillarity becomes progressively 
more dominant. When the heat flux into the melt is used to define the characteristic 
temperature difference and velocity, the stream functions are rather insensitive to 
changes in the thermal boundary conditions at the free surface and at the crucible 
bottom, provided the overall heat balance of the system is correctly estimated. This 
is fortunate because there is considerable uncertainty about these boundary 
conditions. The exception to this insensitivity is that the melt motion due to 
thermocapillarity is sensitive to changes in the amount of heat lost through the part 
of the free surface adjacent to the crystal. 

1. Introduction 
In the Czochralski process a single crystal is grown from a melt contained in a 

crucible inside a furnace, as shown in figure 1. There are heaters around the crucible 
which prevent the solidification of the melt except a t  the crystal-melt interface. There 
are large radial temperature gradients in the melt, so that buoyancy and 
thermocapillarity drive melt motions. Under buoyancy hot fluid rises near the 
vertical crucible wall and flows inward along the free surface. As the fluid cools it 
descends and then returns near the crucible bottom to the vertical crucible wall. The 
surface tension decreases from the crystal to the hotter crucible, so that thermo- 
capillarity drives an inward flow near the free surface with a return flow deeper in the 
melt. 

Here we consider the magnetic Czochralski process with a uniform, axial magnetic 
field which is produced by a solenoid around the furnace. The magnetic field 
suppresses turbulence in the melt and the associated fluctuations in the heat flux 
across the crystal-melt interface. Because of these fluctuations, without a magnetic 
field the crystal alternately grows and remelts, which produces more microdefects in 
the crystal (Kuroda, Kozuka & Takano 1984). A crystal grown in a magnetic 
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FIGURE 1. Czochralski crystal puller with a uniform, axial magnetic field B. 

Czochralski puller has a lower microdefect density. Previous treatments of melt 
motion in a magnetic Czochralski puller involve the numerical solution of the coupled 
NavierStokes equations (with buoyancy and the electromagnetic body force), the 
heat equation, Ohm’s law and the conservation equations for mass and electric 
current (Langlois & Walker 1982). For the typical magnetic field strengths 
(B = 0.1-1.0 T), the inertial terms in the Navier-Stokes equations can be neglected 
everywhere and the viscous terms are only significant in the boundary layers and in 
a free-shear or interior layer lying along the vertical cylinder beneath the outer edge 
of the crystal. If  we assume that the temperature T ( r , z )  is given, then we can 
analytically solve all the equations, except the heat equation, for the velocity, 
pressure and electric current density in each inviscid core region, in each viscous 
boundary layer and in the free-shear layer. These simple analytical solutions in terms 
of the unknown temperature provide physical insights into the melt motion. In 
addition we can analytically solve the heat equation for the boundary and free-shear 
layers. The analytical solutions for the core velocities are introduced into the heat 
equation to obtain a nonlinear equation involving a single unknown, T(r,z) .  This 
scalar equation is solved numerically for the inner core region beneath the crystal 
and for the outer core region beneath the free surface. We discuss the variations of 
the melt motion with changes in the thermal boundary conditions at the free surface 
and at the crucible bottom, with changes in the melt depth during the growth of a 
crystal, and with changes in the magnetic field strength. For a typical Czochralski 
process, the convective heat transfer can be ignored for B 2 0.46T, so that the 
temperature for simple thermal conduction through the melt can be used to 
determine the melt motion due to buoyancy and thermocapillarity . 

In $2, we formulate the problem, present the assumptions and discuss the 
boundary conditions. In $93 and 4, we present the separate solutions for the melt 
motion due to buoyancy and thermocapillarity, respectively. In  995 and 6, we discuss 
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the combined motions for various depths and for various magnetic field strengths, 
respectively. In $$3,4 and 5, the buoyant and thermocapillary convections, and their 
variation with depth, are illustrated with the temperature field for pure conduction, 
which is the correct temperature field for a sufficiently strong magnetic field. In  $6, 
we include the convective heat transfer and solve the nonlinear heat equation to 
obtain the temperature field for modest magnetic field strengths and the resulting 
melt motions. In  $7,  we discuss the superposition of the melt motion associated with 
the rotation of the crucible and crystal and with the crystal growth. In  $8, we discuss 
the heat transfer from the melt to the crystal, we compare the present predictions 
to previous numerical results and we discuss certain implications for the mass 
transport of oxygen and of dopants. 

2. Problem formulation 
With the Boussinesq approximation, the melt density is a linear function of the 

temperature in the gravitational body force and is a constant elsewhere. We assume 
that the surface tension is also a linear function of the temperature and that all other 
physical properties are constants. There is a uniform axial magnetic field BL, where 
L is a vertical unit vector. The system is taken to be axisymmetric, so that the 
dependent variables and boundary conditions do not depend on the azimuthal 
coordinate 8. 

In a typical Czochralski crystal puller, the melt depth decreases at a rate of 
4 x m/s, so that the melt motion is essentially steady at each depth. Without 
a magnetic field, the melt motion is frequently periodic, even for steady boundary 
conditions (Langlois 1981). As the magnetic field strength B increases from zero, first 
the mean flow becomes steady, secondly the turbulence disappears and finally all 
velocities are so small that inertial accelerations are negligible. We assume that B 
is sufficiently large that all three of these magnetic-field effects occur. The minimum 
values of B for the first two effects appear to be between 0.05 and 0.1 T, while the 
minimum value of B for the third effect appears to be between 0.1 and 0.2 T for a 
typical Czochralski puller. Hjellming 6 Walker (1986) treat the melt motions 
associated with the rotations of the crystal and crucible, but ignore the thermally 
driven motions. Here we treat buoyant and thermocapillary convections without 
rotation of the crystal or crucible. With our strong-magnetic-field assumption, all 
melt velocities are very small and the nonlinear inertial terms in the Navier-Stokes 
equations are negligible. Hence the melt motions due to buoyancy, thermocapillarity 
and centrifugal pumping can be treated independently and can then simply be 
superposed. Centrifugal pumping might still affect the buoyant and thermocapillary 
convections through its effects on the temperature. The principal components of the 
centrifugally driven flow are radial jets near the crystal face and crucible bottom and 
a strong, axially elongated vortex beneath the crystal edge. In  $7, we show that these 
motions have a negligible effect on the temperature for modest rotation rates (say, 
15 to 20 r.p.m.) and for B 2 0.2 T, so that the present solutions and those presented 
by Hjellming & Walker (1986) can be superposed with no interaction. 

For the present axisymmetric motion without rotation of the crucible or crystal, 
v8 = j ,  = j, = q5 = 0, where v ,  j and q5 are the velocity, electric current density and 
electric potential function, respectively. Hjellming & Walker (1986) show that the 
meridional motion (vr, vZ) due to centrifugal pumping depends critically on the 
relatively small electrical conductivity of the crystal. This dependence arises because 
(i) the electric potential 9 depends on the division of the meridional current ( j , ,  j,) 
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between the crystal and the crystal-face boundary layer, (ii) the azimuthal velocity 
ve equals the radial derivative of 4, and (iii) the centrifugal force, vfj/r, drives the 
meridional motion. For the present problem, = 0 in both the melt and the crystal, 
so that qi = j, = j, = 0 everywhere. With a purely meridional motion, the induced 
electric field u x B cannot produce an electric potential gradient because v, is parallel 
to B and the axisymmetry precludes an azimuthal electric field due to v,. Therefore, 
the electrical conductivity of the crystal has no effect on the thermocapillary and 
buoyant convections once B is large enough to decouple the centrifugal pumping. 

We assume that the magnetic Reynolds number 

R, = paUL 4 1, 

so that we can neglect the magnetic field produced by the electric currents in the melt 
and in the crystal. The characteristic length L is the inside radius of the crucible and - 
the characteristic velocity is 

P94AT) 
aB2 ' 

U =  

The melt's physical constants are the magnetic permeability ,u (ax x lo-' H/m), the 
electrical conductivity a (lo6 S/m), the density p at the melting temperature 
(2330 kg/m3 at T, = 1685 K) and the volumetric expansion coefficient a 
(1.41 x lOP5/K). All parameter values are based on the growth of a 7.6 cm diameter 
silicon crystal in a crucible with a 19 cm inside diameter ( L  = 9.5 cm and a = 0.4 in 
figure 1) .  The published values for some of the physical constants of molten silicon 
near its melting temperature vary by as much as a factor of ten. Here we consider 
changes in the melt motion due to changes in certain thermal boundary conditions 
or due to changes in the instantaneous depth bL or due to changes in the strength 
B of the uniform, axial magnetic field. We only consider one value for each of the 
physical constants of silicon and these values are given in parentheses. A future paper 
(Hjellming & Walker 1987) will treat the variations of the melt motion over the wide 
range of published values for the physical constants of silicon. The characteristic 
temperature difference (AT) is defined later. In  order to estimate the values of the 
key parameters, we take (AT) = 100 K, which is approximately the temperature 
difference between the crystal and the crucible at the free surface. 

The dimensionless governing equations are 

where 

+ T + M-V2vZ, j, = - v,, 

av, v av, - 
-+2+- - 0, 
ar r a Z  

PeDT = V2T, 

The coordinates ( r ,  z )  are normalized by L ;  the radial and axial melt velocities v, and 
v, are normalized by U ;  the azimuthal electric current density j, is normalized by 
aUB = pga(AT)/B; the dimensional temperature and gauge pressure (denoted by 
asterisks) are given by 

T* = T,+(AT)T,  p* = pgL(b-z)+pga(AT)Lp. (3% a )  
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(TI U(mmls) 
0.1 3.22 
0.2 0.805 
0.3 0.358 
0.4 0.201 
0.6 0.089 
0.8 0.050 
1 .o 0.032 

Rm 
3.8 x 10-4 
9.6 x 
4.3 x 10-6 
2.4 x 
1.1 x 10-6 
6.0 x 
3.8 x 

N 
1.27 x lo* 
2.03 x 103 
1.03 x 104 
3.24 x 104 
1.64 x lo6 
5.19 x lo6 
1.27 x lo6 

M 
359 
719 

1078 
1437 
2156 
2875 
3593 

Pe 

10.64 
2.66 
1.18 
0.665 
0.295 
0.166 
0.106 

TABLE 1. Values of the characteristic velocity and some parameters for a typical Czochralski 
silicon-crystal puller and for various magnetic field strengths B 

z = O  

FIQURE 2. Meridional section showing subregions of the melt for M % 1. 

The interaction parameter N, Hartmann number M and PBclet number Pe are 
defined by 

M =  B L ~ ) ' ,  
vB2L craB4L N = - -  - 
PU P8P(AT)  ' 

The additional physical parameters for the melt that are introduced above are the 
kinematic viscosity v (3 x lo-' m2/s), the specific heat ch (loa J/kg K) and the 
thermal conductivity k (67 W/m K). The values of U ,  R,, N ,  M and Pe for 
B = 0.1-1.0 T are given in table 1. 

We assume that N is sufficiently large that the inertial terms on the left-hand sides 
of (2a,  b) are negligible everywhere. We also assume the M 8 1, so that M-' is the 
small parameter in the asymptotic expansions for the flow variables in certain 
subregions of the melt. The subregions (shown in figure 2) are the outer (0)  and inner 
(i) inviscid cores with 0(1) radial and axial derivatives, the Hartmann layers (h) with 
O(M-l )  thickness, the free-shear or interior layer (f) at r = a with O ( M - f )  thickness, 
the vertical wall layer (w) with O(M-f )  thickness and the intersection regions (I) with 
O(4f-t) x O(M-') dimensions. In  $8, we conclude that the minimum value of B for 
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the neglect of inertial effects and for the subdivision of the melt into these inviscid 
cores and viscous layers is between 0.1 and 0.2 T for a typical Czochralski puller with 
silicon. A variable with a subscript i, 0, f, etc. denotes the leading term in the 
asymptotic expansion for that variable in the inner core, outer core, free-shear layer, 
etc. 

The boundary conditions at  the crystal face are 

v, = v, = T = 0, at z = b,  for 0 < r < a. (4a-c) 

The dimensionless displacement f ( r )  of the free surface from the horizontal plane 
z = b is determined by the condition that the jump in pressure across the free surface 
is proportional to the local surface tension times the local curvature of the surface. 
Buoyancy and thermocapillarity produce a p of 0 ( 1 ) ,  which is the dimensionless 
deviation from a hydrostatic pressure. When we apply the jump condition to the 
gauge pressure (3 b )  at z = b + f, the resultant ordinary differential equation governing 
f indicates that f is comparable with a(AT) = 0.00141. To be consistent with the 
Boussinesq approximation, we neglect f and apply the other free-surface boundary 
conditions at z = b.  The velocity boundary conditions at the free surface are 

where 

i3T 
v ,=O,  %=-WQ- az ar a t z = b  f o r a < r < l ,  

dy/dT* 
Q = -- = 0.036 

PPL2 

and dy/dT* ( - 1.04 x lop4 N/m K) is the constant derivative of the surface tension 
y with respect to the dimensional temperature T*. The parameter Q equals the 
Marangoni number divided by the product of the Grashof and Prandtl numbers. It 
will turn out to be the ratio of a characteristic outer-core velocity due to thermo- 
capillarity, namely 

( - dy/dT*) (AT) 
wB2L2 ’ 

to U .  Published values of a and dy/dT* for molten silicon near T, range from the 
values used here to values that are ten and four times larger, respectively. Therefore 
Q can range from 0.0036 to 0.14, i.e. from 0.1 to 4 times the value used here. In the 
present inertialess approximation, the buoyant and thermocapillary convections are 
treated separately and are simply superposed. If a is increased by a factor of ten, 
then the present thermocapillary stream-function values are multiplied by 0.1 before 
being added to the buoyant stream-function values. If dy/dT* is increased by a factor 
of four, then the thermocapillary values are multiplied by four before this addition. 
This correction is exact for Pe G 1 and approximate for the other values of Ye 
considered here. We present separate key values of the buoyant and thermocapillary 
stream functions for each flow situation. Addition of these key values with a factor 
from 0.1 to 4 gives some concept of the effects of varying the values of a and dy/dT*. 
These variations are considered in detail by Hjellming & Walker (1987), and here we 
only consider the superposition for one pair of values for a and dy/dT*. These are 
the values used by Langlois (1981), Langlois & Walker (1982), and Langlois & Lee 
(1983~).  These are also the values used by Langlois & Lee (1983b) for their 
‘low-buoyancy ’ case, and they present numerical results for melt motions without 
rotation of the crystal or crucible. In  $8 we compare their numerical results with the 
present predictions, and we discuss their ‘ high-buoyancy ’ results to illustrate the 
effect of multiplying a by ten. 
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The heat conduction to the low-pressure argon cover gas is generally considered 
to be much smaller than the radiation from the free surface for molten silicon. The 
Stefan-Boltzmann radiation equation gives a local heat flux that is proportional to 
[(T*)4-T$],  where T, is the effective background temperature. We introduce the 
dimensionless temperature (3a ) ,  and neglect terms that are comparable with 
( A T ) a / q  = 0.0035, so that the radiation equation becomes 

Here 

aT 
- = - C , - C , T  a t z = b  f o r a G r G 1 .  aZ 

rr (5.75 x W/ma K4) is the Stefan-Boltzmann radiation constant and B (0.318) 
is the melt emissivity. All five terms from (T*)4 can be kept (Langlois 1981), but we 
have chosen to keep only the first two terms because (AT) is much smaller than T,. 
The effective background temperature T, depends on the temperatures, emissivities 
and geometries of the crystal, the unwetted crucible wall and the enclosing furnace 
wall, as well as the reflected radiation returning to the free surface. A complete 
calculation of T, at each radial position on the free surface involves a complex 
numerical analysis. In  most treatments of the radiation problem for the crystal, melt, 
unwetted crucible wall and furnace wall, either the melt is treated as an isothermal 
surface (Ramachandran & Dudukovic 1985) or as a rigid thermal conductor 
(Srivastava, Ramachandran & Dudukovic 1985). In  either case, the melt motion is 
ignored in treating the radiation problem. On the other hand, mot previous 
treatments of the melt motion avoid the radiation problem by assuming some 
constant value for T,. Assumed values range from T, = 0 (Langlois 1981) to 
T, = T, = 1685 K (Langlois & Lee 1983a). In a recent paper, Langlois & Kim (1987) 
treat both the melt motion and a simplified radiation problem numerically. Here we 
treat the radiation problem in two steps. First we consider the melt motion due to 
buoyancy and due to thermocapillarity for three different constant values of T, : 
1685 K (C, = 0), 1574 K (C, = 0.5) and 1432 K (C, = 1).  The results in 93 show that 
the dimensionless stream function for the buoyant convection is relatively insensitive 
to these changes in T,. The results in 94 show that the dimensionless stream function 
for the thermocapillary convection is relatively insensitive to these changes in T, for 
0.5 < r < 1 ,  but is quite sensitive to these changes near the crystal edge, 
0.4 < r < 0.5. The rate of radiant heat loss from the free-surface element adjacent 
to the crystal edge strongly influences the local temperature gradient, which in turn 
controls the local thermocapillary convection. In our second step, we model the 
radiation balance for the free-surface element adjacent to the crystal and develop an 
analytical expression for T, for this element as a function of temperatures, geometric 
parameters and melt depth. As the crystal grows, this free-surface element sees less 
of the cold furnace wall and more of the hot unwetted crucible wall, so that T, 
increases. 

The vertical d.c. heaters surrounding the crucible provide the heat input that 
balances the heat conduction to the crystal, the radiation from the free surface and 
any heat transfer through the crucible bottom. The appropriate thermal boundary 
condition at the vertical crucible wall is to prescribe the heat input here. This heat 
input probably varies with z, but there do not appear to be any published data to 
estimate this vertical variation. Therefore we take the heat flux q into the melt at  
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r = 1 to be a constant. We define (AT) = q L / k ,  so that the boundary conditions at 
the vertical crucible wall are 

= 1 a t r =  1. (7a-c) 
aT 
ar 

There also do not appear to be any published data on the magnitude of the heat input. 
The electric current to the heaters is adjusted to prevent flaring, which is the 
solidification of the free surface adjacent to the crystal, and this appears to require 
a temperature difference of approximately 100 K between the crystal and the crucible 
at the free surface. For each solution presented here, we could obtain a situation- 
specific (AT) from the ratio of 100 K to the value of T at r = 1 and z = b. This would 
give situation-specific values for U, the parameters in table 1, C,, etc. However, it 
turns out that T at r = 1 and z = b is generally not too different from one, so that 
(AT) = 100 K and q = 70.5 kW/m2 give reasonable estimates of the orders of magni- 
tude of the parameters. 

During the first few hours of pulling a crystal, the heater projects only a short 
distance beyond the bottom of the crucible. Therefore the bottom receives little 
radiation from the heater, and this small heat input is concentrated near r = 1. Heat 
is lost through the bottom by radiation from the exposed part and by conduction 
down the pedestal (figure 1). Therefore, when b is relatively large, there is a heat loss 
through the bottom, and the heat flux varies from a maximum a t  r = 0 to a smaller 
value at  r = 1. As the crystal is pulled, the crucible is raised so that the free surface 
remains in the same horizontal plane and progressively more of the heater extends 
beyond the bottom of the crucible. Heat input to the bottom overwhelms the heat 
loss, particularly near r = 1. Radiation to the pedestal increases its temperature and 
decreases the heat conduction from the crucible near r = 0. Therefore, when b is 
relatively small, there is a heat input through the bottom and the heat flux varies 
from a maximum at r = 1 to a smaller value at r = 0. To represent this situation, 
we use the boundary conditions 

w, = 8, = 0, - 

- -Do-D,r2  at z = 0. (8a-c) az 
aT 

w, = v, = 0, - - 

We consider three values of b to model three progressive stages in the growth of a 
single crystal. For an early stage, b = 1 and we take D, = -Do = 0.25. The heat flux 
out of the bottom varies parabolically from 0.25q at r = 0 to zero a t  r = 1. For an 
intermediate stage, b = 0.5 and we take Do = 0, D, = 0.25. The heat flux into the 
bottom varies parabolically from zero at  r = 0 to 0.25q at r = 1. For a final stage, 
b = 0.25 and we take Do = 0, D, = 0.5. Each heat flux into the bottom is double that 
for b = 0.5. Since there is only qualitative justification for these values of Do and D,, 
the sensitivity of the melt motion to changes in Do and D,  is important. The final 
boundary conditions 

rw,+O, r-+O at r+O, (9% b)  
aT 
ar 

exclude mass and heat sources at  r = 0. 
The equations (2a-d) (without the inertial terms) and the boundary conditions 

(4a, b), (5 ) ,  (7a, b) ,  (8a ,  b), (9a )  represent a linear boundary-value problem governing 
p, v,, v, and j, for a given temperature T(r ,  2 ) .  The velocities due to buoyancy and 
thermocapillarity are determined separately in terms of T ( r , z ) .  The sum of the 
separate velocities is introduced into ( 2 e )  to obtain a nonlinear equation governing 
the temperature alone. The solutions for the velocities due to buoyancy and 
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thermocapillarity are presented in $53 and 4,  respectively. In each case, the 
characteristics of the separate melt motions are illustrated using the temperature field 
for Pe 4 1. This reference temperature is determined by solving V2T = 0 with the 
boundary conditions (4c) ,  (6), (7c),  (8c) ,  (9b).  This simple potential problem was 
solved analytically using the separation-of-variables method, and numerically using 
an over-relaxed finite-difference method. The separation of variables leads to infinite 
series with convergence problems because the boundary conditions (4c) ,  (6) lead to 
the representation of the Heaviside function H ( r - a )  in terms of an infinite series of 
Bessel functions. This difficulty is overcome by subtracting out this jump at the 
crystal edge, but this step complicates the other boundary conditions. On the other 
hand, the finite-difference solution converges rapidly and accurately, and we use the 
numerical results to illustrate the implications of the analytical solutions for the melt 
velocities. 

In  $53 and 4 we consider the motion due to buoyancy and thermocapillarity for 
arbitrary Pe and we investigate the sensitivity of each motion to changes in Co, Do 
and D,. In $5,  we consider the combination of both flows for Pe Q 1, and we 
investigate the variation of the melt motion with changes in depth. In  $6, we consider 
the combined motion for finite Pe. 

3. Melt motion due to buoyancy 
To consider the buoyancy-driven motion separately, we set Q = 0 in the boundary 

condition ( 5 b ) .  For this case, there is no free-shear layer at r = a and the two inviscid 
cores are combined into a single core denoted by the subscript c. The Hartmann layers 
match any radial velocity at  z = 0 orb and satisfy the boundary conditions (4a),  ( 5 b ) ,  
(8a) .  Assuming that Pe is at most O(1), the jumps in vz, T and aT/az are O(M-'), 
O(M-2) and O(M-l) ,  respectively, across the Hartmann layers on the crucible bottom 
and on the crystal face, but these jumps are O(JP), O(M-s) and O(M-2), respectively, 
across the Hartmann layer adjacent to the free surface. 

The O( 1) core pressure, velocities and azimuthal electric-current density satisfy the 
equations (2a-d) without the inertial or viscous terms and satisfy the boundary 
conditions (4b), (5a ) ,  ( 8 b ) ,  (9a) .  The solution is 

b 
pc = b-' Jo z*[T,(r, z*)- Tc(a, z*) ]  dz* - Jzb Tc(r, z* )  dz*. ( 1 0 4  

The displacement f ( r )  of the free surface due to buoyancy is given by a(AT) times 
(10d) evaluated at z = b. As far as the buoyancy-driven melt motion is concerned, 
the O(1) core temperature q ( r , z )  satisfies the boundary conditions (4c) ,  (6), (8c) ,  
(9b).  

Since aT,/ar is certainly not zero at r = 1, (lOa, c)  indicate that w,, is not zero at 
r = 1. Therefore some of the O( 1)  flow enters the vertical wall layer at some elevations 
and leaves a t  other elevations. An O(Mi) axial velocity inside this layer is required 
to accomplish this vertical redistribution of the O(1) flow. We stretch the radial 
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coordinate by introducing r = 1 + M-iR. Inside this layer v,. and j ,  are O(l), v, is 

P = P c ( ~ , z ) + M - ~ P w ( R , z )  
O(Mi) ,  

and T is given by an identical expression with each p replaced by T. For Pe = 0 ( 1 ) ,  
the equations (2a-e) give 

where +,(R, z )  is the vertical-wall-layer stream function. The boundary conditions 
(7) become 

(12a-c) +,=%=o,  - - I  aTw - a t R = 0 .  
aR aR 

Matching the core solution (10) gives the boundary conditions 

aT, 3% 
aR ar 

+w++c( l , z ) ,  -+-(l,z), as R-t -co .  

Like the Hartmann layers, the intersection regions (I) match any radial velocity in 
the vertical wall layer, but the conditions (5a), (8b) hold for all R,  so that 

+, = 0 at z = 0 and b. (14) 

Equation (1 1 d )  is integrated once with respect to R and the boundary conditions 
(12~2,  c) are used to determine the integration function of z. The result is 

The matching conditions (13) now give 

3% 3% 
ar aZ 
- (1 ,  z )  = 1 -Pe +c( l ,  z )  - (1,  z )  

for the jump in the O(1) radial heat flux across the vertical wall layer. Since 
+c( l , z )  > 0, there is upward flow in this wall layer. If a%/& > 0, then the rising 
fluid is getting hotter and is absorbing some of the heat flux from the vertical crucible 
wall before the heat reaches the core. If aT, /az  < 0, then the rising fluid is getting 
colder and the core receives the heat input from the heater plus the heat rejected by 
the rising fluid. 

Equations (1 1 a,  c), (15) are combined to obtain an equation governing +w : 

Equation (17) and the boundary conditions (12a ,b) ,  (13a), (14) constitute a well- 
posed boundary-value problem governing +w(R, z ) ,  assuming that aT,/az ,  at r = 1, is 
known. This problem is solved by introducing the Fourier cosine transform with 
respect to R of [+-,(R, z )  - +c( 1,  z ) ] .  This incorporates the boundary conditions (12  b), 
(13a)  and introduces the unknown function F(z)  = i33+W/aR3, evaluated at  R = 0. 
Equation (17) is reduced to an ordinary differential equation in z with a variable 
coefficient and with an inhomogeneous term involving F.  The conditions (14) show 
that the transformed variable is zero at z = 0 and b. The solution is introduced into 
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the Fourier inversion formula to obtain an expression for $, in terms of F(z) .  This 
expression is introduced into the remaining boundary condition (12a) to obtain a 
singular integral equation governing F(z) .  This integral equation generally requires 
a numerical solution (Walker, Ludford & Hunt 1971) unless a%/& can be approxi- 
mated by a very simple function, e.g. a constant. Once F is determined analytically 
or numerically, the expression for $, is introduced into (1  1 a, b ) ,  (15) in order to obtain 
v,.,, vzw, j,, p ,  and T,. Velocity profiles are not presented here. For the present 
problem, only two aspects of the vertical wall layer are important: (i) the jump in 
the radial heat flux across this layer, which is given by (16) in term of core variables 
only, and (ii) the fact that this layer matches any v , ( l , z )  given by (10a,c) and 
provides whatever vertical flow is needed to complete the streamlines inside this 
layer. The velocity distribution inside the vertical wall layer is important for the mass 
transport of the oxygen entering the melt from the vertical crucible wall. Vertical- 
wall-layer velocity profiles will be presented in a future paper treating the mass 
transport associated with the present melt motions. 

The sensitivity of the core solution (10) to changes in the coefficients C,, Do and 
D,  in the thermal boundary conditions (6), (8c) can be illustrated with a single pair 
of values for Pe and b. In this section we use Pe 4 1, corresponding to a strong 
magnetic field, and b = 1 ,  corresponding to an early stage in the growth of a crystal. 
Actually we use b = 0.9875 because of the finite-difference grid. For Pe 4 1, the 
boundary condition (16) reduces to the original wall condition (7c). 

The streamlines for C, = 0 (T, = T, = 1685 K) and D, = -Do =0.25 are shown in 
figure 3. Part of the streamline for +c = 0.001 is shown as a dashed line to illustrate 
that the fluid near r = 0 is nearly quiescent. The streamlines for C, = Do = D, = 0 
(thermally insulating crucible bottom) are virtually identical with those shown in 
figure 3. Similarly the streamlines for D, = -Do = 0.25 and for C, = 0.5 
(T, = 1574 K) or for C, = 1.0 (T, = 1432 K) are almost indistinguishable from those 
shown in figure 3. One reason for this insensitivity is the choice of (AT) which leads 
to the boundary condition (7 c).  For Pe 4 1, this boundary condition and the solution 

(18) 
(1Oc) give 

so that the maximum value of +, is 0.125b2 at r = 1 and z = 0.5b. The amount and 
vertical distribution of the buoyancy-driven circulation is primarily determined by 
the values (18) which are independent of C,, Do and D,. For finite Pe, the boundary 
condition (16) leads to larger or smaller values of @,,(l, z )  than those given by (18) 
because of the heat rejected or absorbed by the vertical wall layer. Nevertheless, these 
values at r = 1 are still insensitive to changes in C,, Do and D, and are the dominant 
values of $c for the entire melt. The second reason for the insensitivity of the solution 
(10) to changes in these coefficients is that the integrals in (1Oc) appear to smooth 
out the effects of local changes of aT,/ar. 

While the streamlines based on (1Oc)  do not change significantly, the values of the 
temperature do, as illustrated by the values of T at the free surface shown in figure 
4. If we are actually prescribing q,  the (AT) is known and the actual melt motion is 
insensitive to changes in C,, Do and D,. On the other hand, if we are prescribing the 
temperature difference between the crystal and the crucible at the free surface, say 
100 K, then the values of (AT), q, U and the dimensionless parameters depend on 
C,, Do and D,. For cases (a) ,  ( b ) ,  (c) and ( d )  in figure 4, (AT) = 53.4, 56.8, 73.4 and 
104.2 K, respectively. The values of U ,  R,, N and Pe in table 1 assumed that 
(AT) = 100 K, so that these values are changed appropriately. Therefore if we are 
prescribing the free-surface temperature difference in order to prevent flaring, the 

@ c ( 1 , 4  = W - d ,  
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FIQURE 3. Streamlines for buoyancy only and with Pe < 1, b = 0.9875, C,, = 0, D,  = -Do = 0.25, 
and $c = O.Olm, for m = 1-12. Part of the streamline $c = 0.001 is shown aa a dashed line. The 
upward flow in the vertical wall layer is represented by the line at r = 1. 
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FIGURE 4. Free-surface temperature for Pe < 1 and b = 0.9875: (a) C, = D,, = D, = 0; 
D, = -Do = 0.25 and ( b )  Co = 0, or (c) Co = 0.5, or (d )  Co = 1. 
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dimensionless solution (10) for the melt motion due to buoyancy is insensitive to 
changes in C,, Do and D,, but the value of U ,  which is used to translate these 
dimensionless results into dimensionless velocities, does depend on these thermal 
coefficients. For case (a)  in figure 4, very little heat is lost through the free surface 
or crucible bottom, so that a relatively small q is needed to maintain a given 
free-surface temperature difference, and the buoyancy-driven melt velocities are 
relatively small. For case ( d )  in figure 4, much more heat is lost through the free 
surface and bottom, so that q must be larger to maintain the free-surface temperature 
difference, and the buoyancy-driven melt velocities are nearly twice those for case 
(a) .  The values of C,, Do and D, are certainly not controllable parameters ; we consider 
the effects of changing these coefficients because of the uncertainty about their 
values in an actual crystal puller. 

The expression (1 8) indicates that the magnitude of the buoyancy-driven circula- 
tion decreases like ba as the depth decreases. 

4. Melt motion due to thermocapillarity 
In  this section we drop the buoyancy term T in (2 b) in order to consider the flow 

due to thermocapillarity alone. In the outer core (0) for a < r < 1, the variables vro, 
vz0, j,,, p, and T, are all O(1), while 

satisfy (2c, d )  for any outer-core stream function $,(r, z). 
The melt motion in the free-surface Hartmann layer (h) at z = b for a < r < 1 is 

driven by the boundary condition (5b) ,  and this motion in turn drives the motion 
in other subregions of the melt. For this Hartmann layer we stretch the axial 
coordinate by introducing z = b+M-lZ.  The O(1) temperature and pressure are 
continuous across this layer, so that 

T = %(r,  b)  +&f-lTh(T, z), 

with a corresponding expression for p. In  addition vr andj, are O ( M ) ,  while v, is O(1). 
For Pe = 0 ( 1 ) ,  (2a-e) without the inertial or buoyancy terms give 

where $h(T,Z) is the free-surface Hartmann-layer stream function. The boundary 
conditions (5 ) ,  (6) become 

aT,=-Co-C,T, (r ,b)  az a t 2 = 0 .  

12 
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Matching the outer core gives 

L. N .  Hjellming and J .  8. Walker 

Equation (20e) is integrated with respect to 2 and the boundary conditions (21 a, c) 
are used to determine the integration function of r .  The result is 

The matching conditions (22) now give 

for the jump in the axial heat flux across the free-surface Hartmann layer. Since both 
1c., and a%/& are positive, this Hartmann layer represents a radially inward jet which 
is adjacent to the free surface and which is driven by the radial gradient of the surface 
tension. This jet draws hot fluid from below near the vertical crucible wall and returns 
cold fluid near the crystal edge. The heat rejected by this jet provides some of the 
heat lost through the free surface, so that the outer core sees a smaller heat loss a t  
z = b. The solution of (2Oc) that satisfies the conditions (21 a, b )  and that does not grow 
exponentially as 2 + - w is 

(25) 

The Hartmann-layer velocities, electric-current density and O(N-') pressure varia- 
tion are now given by (20a, b, d ) .  The core matching (22a) gives the boundary 

(26) 
condition 

@,-,(r, b )  = Qr- ( r ,  b )  

on the outer-core stream function. This condition merely states that the O(1) inward 
flow in the free-surface Hartmann layer must be balanced by an equal outward flow 
in the outer core. The outer-core solution that satisfies (Za, b ) ,  (19), without the 
inertial, viscous and buoyancy terms, and that satisfies the boundary condition 

8% 
$h = ( r ,  b )  [1 -exP (211. 

W O  

ar 

(26) is 
Q 3% Q $,-, = - r z - ( r , b ) ,  p ,  = - -%(r,b) .  b ar b 

The deflection f ( r )  of the free surface due to thermocapillarity is given by a(AT) times 
(27 b) .  There are no high-velocity jets in the Hartmann layers on the crystal face or 
crucible bottom because there are no O(M2)  shear stresses on these layers. The radial 
outer-core velocity (lQa), (27a) is independent of z and is proportional to the local 
free-surface temperature gradient. 

An 0(1) flow enters the vertical wall layer (w) from the outer core at  r = 1. This 
fluid flows upward inside this layer and enters the intersection region (I) at r = 1 and 
z = b. It then flows inward inside this region and enters the free-surface Hartmann 
layer a t  r = 1.  The analysis for the vertical wall layer and adjacent intersection region 
at z = b parallels that discussed in 53. The treatment of the intersection region is 
somewhat more complex because this region is now part of the O(1) flow circuit. Since 
there is no buoyancy, (17) reduces to 
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This equation with appropriate boundary conditions is solved by the separation- 
of-variables method, and the result is a series solution which converges with a few 
terms. Equation (15) holds for all R,  and matching the outer core gives 

a% aT.0 
ar a% - (1, z )  = 1 -Pe $o(l, z)- ( 1 ,  z )  (29) 

for the jump in the 0(1) radial heat flux across the vertical wall layer due to 
thermocapillarity. For the present analysis, the only other important aspect of the 
vertical wall layer and adjacent intersection region a t  z = b is that the former accepts 
any uniform radial velocity from the outer core and the latter returns an equal flow 
to the free-surface Hartmann layer. Vertical-wall-layer velocity profiles for the melt 
motion due to thermocapillarity will be presented in a future paper treating the mass 
transport associated with these melt motions. 

Thermocapillarity does not produce any motion in the inner core or adjacent 
Hartmann layers, i.e. ki = 0. The intersection region a t  r = a and z = b accepts an 
0(1) flow from the free-surface Hartmann layer at r = a and delivers an equal flow 
to the free-shear layer at z = b.  This fluid flows down the free-shear layer and enters 
the outer core as a uniform radial velocity at r = a. To study the structures of the 
free-shear layer and adjacent intersection region at z = b, we stretch the radial 
coordinate by introducing r = a + M-tR. The free-shear-layer solution matches the 
inner and outer cores as R+ - co and + co, respectively. Equation (28) with w 
replaced by f holds and is solved by separation of variables. The 0(1) temperature 
and pressure are continuous across the free-shear layer so that 

T,(% 4 = %(a, 4. (30) 

The integration of (1 1 c) governing the O(M-4) perturbation temperature T,(R, z) and 
the matching with the outer-core variables as R+ 00 give 

The matching with the inner-core variables as R+ - now gives 

for the jump in the radial heat flux across the free-shear layer due to thermocapil- 
larity. For the fluid entering the free-shear layer at z = b,  the temperature T = 0.  As 
this fluid descends, its temperature rises (aT/az < 0) ,  and the fluid absorbs some of 
the heat flowing into the free-shear layer from the outer core. For the melt motion 
due to thermocapillarity alone, $i = 0, but we leave $i in the jump condition (31) 
because in $6 we apply the jump conditions (24), (29)-(31) using a +o equal to the 
sum of (lOc), (27a) with T, = To and using $i equal to (1Oc) with T, = q. Considered 
by itself the melt motion due to buoyancy does not involve a fme-shear layer at  r = a. 
However, the melt motion due to thermocapillarity produces a jump (31) in aT/ar 
across the free-shear layer, so that (1Oc) indicates that there is now a jump in the 
stream function for the buoyancy-driven flow. The free-shear layer accommodates 
the downward flows associated with thermocapillarity and with this modification of 
the buoyancy-driven flow. 

The melt motion driven by thermocapillarity and the effects of changing the 
thermal coefficients C,, Do and D, are illustrated in this section with the T(r,  z )  for 

12-2 
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Z 

FIQWRE 5. Streamlines for thermocapillarity only and with Pe Q 1, b = 0.9875, C,, = 0, and 
D 1 -  --D,=0.25.Here~-,=0.01,0.02,0.03,0.035,0.04,0.05,0.06,0.ltlnd0.2.Theupwardflow 
inside the vertical wall layer, the inward flow inside the free-surface Hartmann layer and the 
downward flow inside the free-shear layer are represented by the lines at r = 1, z = b and r = a, 
respectively. 

Pe < 1 and b = 0.9875. The general conclusions about the effects of changing the 
thermal coefficients are equally true for any b and Pe < 10. The streamlines for C,, = 0 
and D, = -Do = 0.25 are shown in figure 5. This motion is driven by the inward flow 
inside the free-surface Hartmann layer, and this flow is proportional to the local radial 
heat flux raT/ar at the free surface. For a constant radial heat flux, raT /ar  would 
be one for all r ,  and the outer-core streamlines in figure 5 would be a set of horizontal 
lines for the return flow from the free-shear layer to the vertical wall layer. This is 
not the case because the radial heat flux at  the free surface is not a constant. The 
boundary condition (7c )  gives $o(l, b) = Q = 0.036 for Pe < 1. As we move inward 
along the free surface from the crucible, the local radial heat flux first decreases 
slightly because of heat lost through the free surface here. For C, = 0, the value of 
Ilro(r, b) decreases slightly to 0.035 at r = 0.9, so that a small fraction of the inward 
flow leaves the Hartmann layer and returns to the vertical wall layer through the 
outer core. This gives a very weak counterclockwise circulation near r = 1 and z = b. 
Since much of the heat eventually enters the crystal at  z = b, there is an axial heat 
flux toward the top. For C, = 0, the axial heat flux toward the free surface from 
below exceeds the heat lost through the free surface for r < 0.9, so that raT/ar  and 
Ilr0 at z = b increase as T decreases from 0.9. The free-surface Hartmann layer draws 
fluid from the outer core until Ilro(a, b) = 0.24 for this case, so that there is nearly seven 
times as much flow inside the Hartmann layer at r = a as at r = 1. The flow turns 
down into the free-shear layer and completes its circuit through the outer core. There 
is a very strong, axially elongated, counterclockwise circulation near the crystal edge. 
This circulation is driven by the large value of ri3Tlar near r = a and z = b which 
is associated with the convergence of the heat flux toward the crystal face. 

The streamlines for C, = Do = D, = 0 or for D, = -Do = 0.25 and C, = 0.5 or 1.0 
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are similar to those in figure 5.  The principal effect of changing these coefficients is 
to change the magnitude of the strong circulation near r = a. For each case 
$o(l, b )  = 0.036, but +o(a, b) = 0.26, 0.24, 0.17 and 0.10 for cases (a ) ,  (b), (c) and ( d )  
in figure 4, respectively. Changing Do and D, has a minor effect on the free-surface 
temperature (cases a and b in figure 4) and hence has very little effect on the melt 
motion due to thermocapillarity. Changing C, (cases b, c and d in figure 4) has a 
relatively minor effect on aT/ar a t  z = b for 0.65 < r < 1, but has a strong effect for 
0.4 < r < 0.5. The boundary condition (6) gives the axial heat flux through the free 
surface. When we change C, from 0 to 1, this heat flux a t  r = 1 only changes from 
0.87 to 1.48, but this heat flux at T = a changes from 0 to 1.0. With C, = 0, there 
is no heat loss through the free surface at r = a and the local radial temperature 
gradient becomes very large. With C, = 1, there is still a significant heat loss through 
the free surface near r = a ,  i3To/i3r at r = a ,  z = b is much smaller than it is for C, = 0, 
and the circulation near r = a is much weaker. Therefore the only important effect 
of changing C,, is the resultant change in the heat flux through the free surface near 
the crystal edge, which in turn controls the magnitude of the melt circulation near 
r = a. 

An estimate of the heat loss through the free surface near the crystal edge is needed 
in order to determine the magnitude of the melt circulation near r = a due to 
thermocapillarity . All parts of the free surface, exposed crystal surface, unwetted 
crucible wall and furnace wall are emitting, absorbing and reflecting radiation. 
Aspects of these radiation problems have been treated by Ramachandran & 
Dudukovic (1985) and by Srivastava, Ramachandran & Dudukovic (1985,1986). In 
their treatment the exposed crystal surface and the free surface are divided into many 
sections, each with a different temperature. The unwetted crucible wall and furnace 
wall have two different, uniform temperatures. Each isothermal surface emits 
radiation, absorbs radiation emitted by each of the other surfaces and absorbs 
radiation reflected by each of the other surfaces. The final result is a set of 
simultaneous equations which are solved numerically. Stern ( 1985) develops a similar 
treatment. We use a two-step, approximate treatment to estimate the heat loss 
through the free surface near the crystal edge. 

In the first step, we treat black-body radiation ( E  = 1 and no reflection for all 
surfaces). The exposed crystal surface is at r = a for b < z < b+ L,; the unwetted 
crucible wall is at T = 1 for b < z < b+ L,; the furnace wall is at r = 1 for 
b+L, < z  < b+L, and at z = b+L, for 0 < r < 1. We compute the radiation view 
factors for a differential area of the free surface at r and take the limit as r+a. The 
temperature variation along the crystal and L, do not matter because the free-surface 
element adjacent to the crystal edge only receives radiation from the part of the 
crystal surface near z = b which is at T* = T, = 1685 K. The temperature variation 
along the free surface does not matter because an element of the free surface does 
not receive radiation from the rest of the free surface since there is no reflection. The 
furnace wall and unwetted crucible wall are assumed to have different, uniform 
temperatures, T,, and Tuc, respectively. The result is a formula for the radiation 
received by the free-surface differential area at r = a from the crystal surface, 
unwetted crucible wall and furnace wall. 

The approximation is introduced in the second step to estimate the effects of partial 
emissivity ( E  < 1) and reflection. The results of the first step are converted into an 
equivalent one-dimensional radiation problem with two parallel planes. The first 
plane represents the differential area adjacent to the crystal edge and has T* = T,, 
while the second plane represents the crystal surface, unwetted crucible wall and 
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furnace wall. The second plane has T* = Tebb, the effective background temperature 
to give the same black body radiation to the free-surface element. We then let 
E = 0.318 and 0.59 for the first and second planes respectively, and we let the 
reflectivity of each plane equal 1 - E (Ramachandran & Dudukovic 1985). The balance 
of incident, reflected, emitted and absorbed radiation at each plane leads to an 
estimate of the increase in the radiation absorbed by the free-surface element because 
of partial emissivity and reflection. We take T,, = 373 K, T,, = 1785 K, 
L, L = 1.0 m (tall enough to hold a 1.0 m long crystal) and L, L = 3.0, 7.7 and 
10.1 cm for b = 1.0, 0.5 and 0.25, respectively. As the crystal is pulled, the increase 
in L,, the height of the unwetted crucible wall, equals the decrease in b.  The results 
give an equivalent background temperature T, for the free-surface differential area 
adjacent to the crystal edge: T, = 1490 K and C, = 0.66 for b = 1.0; T, = 1624 K and 
C, = 0.232 for b = 0.5; T, = 1659 K and C, = 0.101 for b = 0.25. A free-surface 
element at a larger r would have a higher T, and smaller C, because it is closer to 
the hot unwetted crucible wall. However, we have seen that only the heat loss through 
the free surface near r = a is critical for the melt motion. If we use these values of 
C, for the entire free surface, we will overestimate the heat loss through the free 
surface near the crucible, but the melt motion is relatively insensitive to the heat flux 
near r = 1. For C, = 0.66, C,  = 0.496, D,  = -Do = 0.25, Pe 6 1, a = 0.4 and 
b = 0.9875, @ J a , b )  = 0.15, which indicates the actual magnitude of the melt 
circulation due to thermocapillarity near r = a. In §§5 and 6 we use these estimated 
values of C, for a number of cases with various values of b and Pe. 

The result (26) indicates that the magnitude of the melt circulation due to 
thermocapillari ty is independent of the depth bL, except through the dependence of 
the free-surface temperature on depth. Since the magnitude of the buoyancy-driven 
circulation decreases like b2, we expect thermocapillarity to become progressively 
more dominant as the depth decreases. 

In this paper we use the traditional bulk-flow approximation in which the crystal 
face and free surface are assumed to lie in the same horizontal plane (Langlois 1981). 
In reality there is a meniscus: at the crystal edge the free surface is at  an angle of 
11" to the vertical, rather than 90°, and as r increases from a, the free surface curves 
down towards a horizontal plane which is below the crystal edge. Does the strong, 
axially elongated thermocapillary convection near r = a occur when the meniscus is 
included ? The first effect of the meniscus is to reduce the temperature gradient along 
the free surface near the crystal edge. The large values of aT/ar, at r = a, z = b, in 
figure 4 are associated with the heat conduction around a sharp, 90" corner. With 
the meniscus, the heat flows around a corner with a finite radius of curvature, 
and the temperature gradient at the corner is much less. Srivastava et al. (1985) solve 
for the heat conduction in the melt and crystal with radiation from both surfaces. 
They treat both a horizontal free surface with a sharp, 90" corner at the crystal edge 
and a free surface with a meniscus rising to an 11" angle a t  the crystal edge. From the 
isotherms for the two cases, it appears that the temperature gradient along the free 
surface at  the crystal edge is reduced by a factor of two or three by the addition of 
the meniscus. This effect has been incorporated into the present calculations. When 
we evaluate aT,/ar, at r = a, z = b,  for the thermocapillary stream function (27a), 
we do not use the slopes of the curves in figure 4 at r = a. Instead we use 

h-'[T(a+0.5h, b)-T(a-00.5h, b ) ] ,  

where h = 0.025 is the grid spacing for our finite-difference treatment of (2e). This 
gives free-surface temperature gradients at r = a which are one-third to one-half those 
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in figure 4. In essence, we are assuming that the radius of curvature of the meniscus 
is comparable with h. 

The second effect of the meniscus is to change the optical orientation of the 
free-surface element adjacent to the crystal edge. Because of this change, this element 
receives more radiation from the hotter free surface and unwetted crucible wall and 
less radiation from the colder crystal and furnace wall. This change increases T,, 
reduces the net radiant heat loss for this element, and increases the free-surface 
temperature gradient here. This effect is included in the numerical results presented 
by Srivastava et al. (1985). 

The third effect of the meniscus is to change the structure of the free-surface 
Hartmann layer because the local free surface is no longer perpendicular to the 
magnetic field. To treat this Hartmann layer, we use an orthogonal curvilinear 
coordinate system ( t ,  8, n ) ,  where t is the distance along the free surface from the 
crystal edge and n is the distance along the local normal to the free surface, out of 
the melt. We stretch the normal coordinate by substituting n = M-lN. To first 
order, the surface curvature has no effect, and the principal change is that exp (2) is 
replaced by 

exp (N cos A ) ,  

where h = arccos ( 2 - R )  is the 'local angle between 2, the unit vector parallel to the 
magnetic field, and r?, the unit normal to the free surface. The thickness of a 
Hartmann layer is inversely proportional to the normal component of the magnetic 
field, so that the thickness of the free-surface layer increases as h increases from zero. 
The tangential shear stress in a layer is proportional to the tangential velocity divided 
by the layer thickness. Since the boundary condition (5b)  prescribes a specific shear 
stress a t  the free surface, the tangential velocity must increase as sec h to compensate 
for the increase in the layer thickness, as h increases. The total flow inside the layer 
at a given point on the free surface is given by the integral of the increased tangential 
velocity over the increased boundary -layer thickness. Therefore the boundary 
condition (26) on the outer-core stream function is replaced by 

aT $,, = Qr s e c a h o  at n = 0, 
at 

where r and h are functions of t (D. N. Riahi & J. S. Walker 1987, paper in 
preparation). As we move inward along the meniscus towards the crystal edge, the 
flow driven by thermocapillarity for a given temperature gradient is amplified by a 
factor equal to sec2h. This factor reaches a value of 27.5 for h = 79O at the crystal 
edge. 

The radius of curvature of the meniscus, normalized by the crucible radius, is rather 
small. Therefore we might assume that it is comparable with M*, so that the 
meniscus occupies the part of the free surface above the free-shear layer at  r = a. For 
this case, the analysis for the intersection region (I), which now follows the free surface 
with An = O(M-') and At = O(M-t),  is exactly the same as that for the meniscus 
above the outer core. The increase in the tangential gradient is insufficient to change 
the Hartmann-layer solution, which retains its local structure, exp (N cos A). 
Therefore, the same sec2 h amplification of the thermocapillary motion occurs inside 
the free-shear layer. As we approach the crystal edge, the acceleration of the 
free-surface jet continues until we enter the O(M-') x O(M-l)  viscous region a t  the 
crystal edge. For B = 0.1-1.0 T, this is a very small region. Inside this region, 
the free surface jet turns to enter the free-shear layer as a flow source at r = a, z = b.  
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For magnetic Czochralski flows, the bulk-flow approximation implicitly assumes that 
the dimensionless radius of curvature of the meniscus is comparable with M-l.  

The effects of the meniscus are to reduce the free-surface temperature gradient at 
the crystal edge and to increase the thermocapillary flow near r = a due to changes 
in the free-surface Hartmann-layer structure. The latter implies extremely strong 
flow accelerations near the crystal edge, and these accelerations are probably limited 
by inertial effects, which are ignored here. The results presented here ignore the 
meniscus and involve strong thermocapillary convection near r = a. Combining the 
two effects of the meniscus, we conclude that the present analysis underestimates 
the thermocapillary convection that would occur in an actual puller with a meniscus. 

5. Combined motions for Pe < 1 and several depths 
Figure 6 presents the streamlines for the melt motion due to both buoyancy and 

thermocapillarity with the T(r,  z )  for Pe < 1. Figure 6 (a)  represents the combination 
of the streamlines in figures 3 and 5 for b = 0.9875, except that C,, = 0.66 instead of 
0. For this depth the circulations due to buoyancy and thermocapillarity are almost 
equal. The maximum values of the separate stream functions are 0.12 and 0.15 for 
buoyancy and thermocapillarity, respectively. There are three types of streamlines 
in figure 6 (a).  The streamlines for 0 < $ < 0.036 (i) go upward inside the vertical wall 
layer a t  r = 1 from near the bottom ( z  < 0.07) to the free surface, (ii) go inward inside 
the free-surface Hartmann layer at z = b from the crucible to the crystal edge, (iii) 
go downward a short distance inside the free-shear layer at r = a, (iv) go downward 
inside the inner core near r = a and return to the free-shear layer, (v) go downward 
a short distance inside the free-shear layer, and (vi) go across the outer core near the 
bottom ( z  < 0.17) to the vertical wall layer. These streamlines account for all of the 
flow entering the inner core beneath the crystal face. The streamlines for 
0.036 < $ < 0.085 (i) go upward inside the vertical wall layer from near the bottom 
(0.07 < z < 0.2) to near the free surface (0.86 < z < b ) ,  (ii) go inward across the outer 
core until they enter the free-surface Hartmann layer near the crystal edge, (iii) go 
a short distance inside the free-surface Hartmann layer to the crystal edge, (iv) go 
downward inside the free-shear layer to 0.13 < z < 0.35, and (v) go outward across 
the outer core to the vertical wall layer. The streamlines for 0.085 < $ < 0.15 
represent two separate melt circulations. The first involves a counterclockwise 
circulation through the vertical wall layer and the outer core in the region 
0.6 < r < 1 and 0.2 < z < 0.86. The second involves a counterclockwise circulation 
through the free-surface Hartmann layer, free-shear layer and outer core in the region 
0.4 < r < 0.5 and 0.35 < z < b. 

The streamlines for an intermediate stage in the growth of a crystal when 
b = 0.4875 are shown in figure 6(b). For this depth, the circulation due to thermo- 
capillarity is nearly four times that due to buoyancy. The maximum values of the 

FIQURE 6. Streamlines for the melt motion due to both buoyancy and thermocapillarity with 
Pe 4 1. Upward flow inside the vertical wall layer, inward flow inside the free-surface Hartmann 
layer and downward flow inside the free-shear layer are represented by the lines at r = 1 ,  z = b and 
r = a, respectively, (a) b = 0.9875, C, = 0.66, D, = -Do = 0.25, and $ = O.Olm, for m = 1-14. 
Some streamlines near r = a  and z = b are not shown. (b )  b =0.4875, Co = 0.232, Do =0 ,  
D, = 0.25, = 0.002m, for m = 1-6 in the inner core, and $,, = 0.004m, for m = 1-12, plus 
$,, = 0.06, 0.1 in the outer core. (c) b = 0.2375, C, = 0.101, Do = 0, D, = 0.5, = 0.001, 0.002, 
0.003 in the inner core, and $o = 0.004m, form = 1-10, plus $o = 0.05,0.06,0.07 in the outer core. 
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separate stream functions are 0.03 and 0.1 1 for buoyancy and thermocapillarity, 
respectively. The three types of streamlines described for b = 0.9875 still occur, but 
the values of @ for each type are different. For the first type of streamline, which 
penetrate into the inner core, 0 < $ < 0.012, so that the flow into the inner core is 
one-third that for b = 0.9875. For the second type of streamline, which go from r = 1 
to a near the free surface and return from r = a to 1 near the bottom, 
0.012 < $ < 0.038, so that this circulation is roughly half that for b = 0.9875. For 
these streamlines the inward flow is now divided between the free-surface Hartmann 
layer and the outer core. The third type of streamline again represents two separate, 
local, counterclockwise circulations. As b decreases from 0.9875 to 0.4875, the local 
circulation through the free-surface Hartmann layer, free-shear layer and outer core 
near r = a and z = b remains essentially unchanged. For both values of b,  this 
circulation corresponds to A@ = 0.07. However the local circulation through the 
vertical wall layer and the outer core near r = 1 and z = 0.6b diminishes from 
A@ = 0.06 for b = 0.9875 to A@ = 0.012 for b = 0.4875. 

The streamlines for a final stage in the growth of a crystal when b = 0.2375 are 
shown in figure 6 (c). For this depth the circulation due to thermocapillarity is twelve 
times that due to buoyancy. The maximum values of the separate stream functions 
are 0.007 and 0.086 for buoyancy and thermocapillarity, respectively. For the first 
type of streamline, which penetrate into the inner core, 0 < @ < 0.004, so that the 
flow in the inner core is one-ninth that for b = 0.9875. The streamlines in the outer 
core arc very similar to the streamlines for thermocapillarity alone. For the second 
type of streamline, with circulation from r = 1 to a and back, 0.004 < @ < 0.03 and 
the inward flow is entirely inside the free-surface Hartmann layer. There is only 
outward flow in the outer core. For the third type of streamline, with separate 
circulations near r = a and r = 1, the circulation near r = a and z = b has diminished 
slightly to A$ = 0.055 from A@ = 0.07 for b 2 0.4875. The circulation near r = 1 and 
z = 0.6b has disappeared and has been replaced by the weak circulation near r = 1 
and z = b, which is associated with thermocapillarity as described in $4. 

6. Combined motion for various values of Pe 
In the present analysis the P6clet number Pe reflects the magnetic field strength 

B. As B is increased, U and hence Pe decrease like B-2. The solutions in $13 and 4 
for the stream functions in terms of the unknown temperature T(r, z )  are valid for 
any Pe. We have illustrated the characteristics of these melt motions with the T(r,  z) 
for Pe 4 1 corresponding to a strong magnetic field. Here we consider the melt 
motions for the T(r,  z )  for other values of Pe. 

Equation (2e) is solved separately for the temperatures Ti and To in the inner and 
outer cores. For the outer core, the velocities for the left-hand side of (2e) are given 
by the sum of the stream functions ( ~ O C ) ,  (27a) with T, = To. For the inner core, only 
the stream function (1Oc) with T, = Ti is used. The outer-core temperature satisfies 
the boundary conditions (8c), (24), (29), again with given by the sum of the stream 
functions ( ~ O C ) ,  (27a). The inner-core temperature satisfies the boundary conditions 
(4c), (8c), ( 9 b ) .  The inner- and outer-core temperatures are coupled by the jump 
conditions (30), (31). These coupled boundary-value problems are solved numerically 
using a finite-difference method. 

The isotherms for b = 0.9875 and for Pe 4 1 (large B)  or Pe = 3 (B = 0.188 T) or 
P e  = 10 ( B  = 0.103 T) are presented in figures 7(a-c). Figure 7(d) presents (a) the 
temperature of the free surface at the first grid point beyond the crystal edge, ( b )  
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the temperature of the free surface at the crucible wall, ( c )  the temperature at the 
bottom of the vertical wall, and ( d )  the temperature at the centre of the crucible 
bottom. 

As the PBclet number increases (B decreases), the temperature everywhere on the 
bottom decreases and the temperature of the free surface near the crystal increases. 
Cold fluid is carried from near the crystal and free surface to the bottom, while hot 
fluid is carried from the vertical crucible wall to the free surface and inward toward 
the crystal. As Pe increases from 0 to 6, the temperature of the free surface at the 
crucible increases as hot fluid is carried up to the free surface. As Pe increases, thermal 
convection carries an increasing fraction of the total heat flux from the vertical 
crucible wall to the free surface and crystal. Therefore the fraction carried by thermal 
conduction and the associated temperature difference between the crucible and 
crystal decrease. As Pe first increases from zero, the fraction of the heat flux carried 
by convection is still very small, so that the average temperature of the vertical 
crucible wall remains almost constant. The principal effect of convection for small 
values of Pe is to make the isotherms more vertical, so that the top and bottom 
become hotter and colder, respectively. However, for Pe > 6, the reduction in the 
fraction of the total heat flux carried by thermal conduction becomes significant, the 
mean temperature of the vertical crucible wall drops significantly, and the free surface 
at the crucible cools as Pe increases above 6. 

The isotherms T = 0.6 for Pe = 3 and T = 0.8 for Pe = 10, actually bend inwards 
slightly at the free surface, indicating a heat flux into the outer core from the free 
surface. The jet driven by thermocapillarity inside the free-surface Hartmann layer 
is cooling as i t  moves radially inward. The heat it loses reduces tho heat flux from 
the outer core at the free surface for all r. Near r = a,  the heat rejected by this surface 
jet exceeds the local radiation from the free surface, so that the outer core sees a small 
heat input at z = b. 

Because of our definition of the dimensionless temperature, the preceding dis- 
cussion assumes that the heat input to the vertical crucible wall is the same for all 
magnetic-field strengths. If the heat input is adjusted to give the same temperature 
difference at the free surface between the crystal and crucible, then curve (b) in figure 
7 (d) indicates that the required heat input decreases slightly as B is increased from 
0.103 to 0.133 T (Pe = 6) and then increases as B increases from 0.133 T to 00. For 
large B, the required heat flux is 25% more than that for B = 0.103 T. In reality, 
flaring is a function of the radial temperature gradient near the crystal edge, rather 
than of the overall temperature difference at the free surface, and this temperature 
gradient is proportional to curve (a) in figure 7 (d). To maintain a constant value of 
aT/ar a t  r = a and z = b, the heat input must increase as B is increased and the heat 
flux for large B is 2.75 times that for B = 0.103 T. Therefore, for constant radial 
temperature gradient at the crystal edge, the elevation of the crucible temperature 
at the free surface above T, = 1685 K for large B is 2.2 times that for B = 0.103 T. 
Since the rate at which the silicon melt dissolves the quartz crucible increases with 
increasing local temperature, much more oxygen may enter the melt for strong 
magnetic fields than for weak ones, if aT/ar a t  r = a and z = b is kept constant to 
prevent flaring. 

The heat flux to the crystal is more uniform for a strong magnetic field than for 
a weak one. For Pe -4 1, figure 7 (a) indicates that the heat flux is nearly uniform over 
most of the crystal face with a modest increase near the crystal edge. For Pe = 3, 
figure 7 (b) indicates that heat fluxes near r = 0 and r = a are respectively somewhat 
less and more than those for Pe -4 1, but the differences are less than 10 yo. However, 
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FIQURE 7 (a, b) .  For caption see facing page. 

for P e  = 10, the heat fluxes near r = 0 and r = a are respectively roughly half and 
twice those for Pe -4 1. All of the fluid that travels from r = 1 to r = a either travels 
entirely inside the free-surface Hartmann layer or enters this Hartmann layer near 
r = a. Therefore, once thermal convection becomes significant, the flow delivers a 
large amount of heat to the region very near the crystal edge, so the heat enters the 
crystal here. The corresponding reduction in thermal conduction reduces the heat 
flux to the centre of the crystal. 
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FIQURE 7. Temperatures for b = 0.9875, Co = 0.66 and D, = -Do = 0.25. (a) Isotherms for Pe 4 1 : 
T = 0.2m, for m = 1-9. (b) Isotherms for Pe = 3 (B  = 0.188 T): T = 0.2m, for m = 1-8. (c) 
Isotherms for Pe = 10 ( B  = 0.103 T): T = 0.2m, for m = 1-7. (d) Temperatures for Pe = 0-10: (a) 
Tat r = a+0.025andz = b, (b)  Tatr = 1 andz = b, (c) Tat r = 1 andz = 0, and (d) Tat r = z = 0. 
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FIGURE 8. Streamlines for the melt motion due to both buoyancy and thermocapillarity with 
b = 0.9875, C, = 0.66 and D, = -Do = 0.25. (a) P e  = 3 and $ = O.Olm, for m = 1-15. (b)  Pe = 10 
and $ = 0.01m, form = 1-10. Some of the streamlines near r = a and z = b are not shown. Upward 
flow inside the vertical wall layer, inward flow inside the free-surface Hartmann layer and 
downward flow inside the free-shear layer are represented by the lines at r = 1, z = b and r = a, 
respectively. 

The isotherms for Pe  = 0.5 are virtually indistinguishable from those for Pe Q 1. 
Therefore, the pure-thermal-conduction solution is certainly valid for Pe < 0.5 
(B 2 0.461 T). In fact, there are only slight differences between the isotherms for 
Pe = 1 and those for Pe < 1, so the pure-conduction solution is relatively accurate 
for B 2 0.326 T. 
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The streamlines for b = 0.9875 and for Pe = 3 or 10 are presented in figure 8. The 
corresponding streamlines for Pe 4 1 are presented in figure 6 (a) .  While the isotherms 
for these three values of Pe are radically different, the streamlines are remarkably 
similar. This similarity is due primarily to two aspects of the normalization. First, 
the characteristic velocity U varies as B-2, so that a given A$ represents four times 
as much flow for B = 0.1 T as for B = 0.2 T. Secondly, U is proportional to (AT), 
which is defined as qL/k. While q may be different for different B, the dimensionless 
$ is relatively insensitive to changes in B. 

There are three significant variations of the streamlines with Pe. The first variation 
is that, as Pe increases from 0, the circulation at r = 1 first increases and then 
decreases. The stream function for the buoyancy-driven motion a t  r = 1 is given by 
(1Oc) with the jump condition (16) for the radial temperature gradient in the outer 
core at r = 1 .  For Pe 4 1 ,  aTo/ar = 1 at r = 1 and the buoyancy $o is given by (18). 
As Pe increases from 0, the jump condition (16) indicates that aT,/ar at r = 1 is greater 
than 1 when aT/az < 0 here. As long as the temperature at  the free surface is less 
than that at the bottom, then the fluid flowing upward inside the vertical wall layer 
cools and rejects heat. The rejected heat augments the heat input to the vertical wall, 
so that the outer core receives a heat flux greater than q. The maximum value of $ 
at r = 1 rises from 0.14 for Pe -g 1 to 0.155 for Pe = 3.  At Pe = 7, the free-surface 
and bottom temperatures at T = 1 are equal. For Pe > 7, the free surface is hotter 
than the bottom, so that the rising fluid inside the vertical wall layer must absorb 
heat. The heat flux into the outer core is less than q and the maximum value of $ 
at r = 1 decreases to 0.11 for Pe = 10. 

The second significant variation of the streamlines with Pe concerns the 
thermocapillary-driven flow, which is proportional to the value of aTpr a t  z = b.  The 
curves (a) and ( a )  in figure 7 ( d )  indicate that the temperature difference between 
r = a +0.025 and r = 1 a t  the free surface does not change significantly for Pe = &lo, 
so that the free-surface temperature gradient and the thermocapillary-driven flow for 
0.5 < r < 1 does not change much as Pe increases. However, T at r = a+0.025 and 
z = b increases by a factor of 2.75 as Pe increases from 0 to 10, so that the 
thermocapillary-driven circulation near r = a increases greatly as Pe increases. The 
value of $o at r = a and z = b increases from 0.15 for Pe Q 1, to 0.24 for Pe = 3 and 
then to 0.40 for Pe = 10. This strong, axially elongated, counterclockwise circulation 
near r = a is actually nearly coincident with a strong, axially elongated, clockwise 
circulation inside the free-shear layer due to the differential rotation of the crystal 
and crucible (Hjellming & Walker 1986). This competition is not important for the 
thermal problem, as discussed in the next section. However, it  is important for the 
mass transport problem. 

The third important variation of the streamlines with Pe is the increase in the 
inner-core circulation as Pe increases. The isotherms in figure 7 (a) indicate that there 
is little radial temperature gradient in the inner core for Pe Q 1. As Pe increases, figure 
7(b,c)  indicates that the radial temperature gradients increase here, and (1Oc) 
indicates that the circulation increases. As mentioned above, the shift from the 
thermal conduction to convection leads to a concentration of the heat flux to the 
crystal near its edge and this concentration accounts for the increased slope of 
the isotherms in the inner core in figure 7 (c). 
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7. Superposition of other melt motions 
In a typical Czochralski process, the crystal and crucible are rotated about the axis 

of symmetry with different angular velocities. These rotations produce an azimuthal 
melt motion (ve), and the centrifugal force associated with v g  drives an additional 
meridional motion (v,. and vZ). Hjellming & Walker (1986) treat the meridional motion 
due to the centrifugal force assuming that all inertial effects, except the radial 
centrifugal force vt / r ,  are negligible. To extend the present analysis to include the 
melt motions associated with the crystal and crucible rotations, we simply add 
the stream function for the melt motion due to the centrifugal force to those for the 
motions due to buoyancy (1Oc) and thermocapillarity (27a) .  This superposition is 
only justified when the magnetic field is sufficiently strong that all inertial effects are 
negligible, i.e. for N % 1. We use the total stream function in each core to determine 
the velocities for the left-hand side of the heat equation (2e) .  The numerical solution 
for T(r, z )  now depends on two new parameters: the ratio of the angular velocities 
of the crystal and crucible and the ratio of U to the characteristic velocity for 

centrifugal pumping, p W L  
uc* = - 1  

where Q is the crucible angular velocity. In  the following paragraphs we show that 
the melt motion due to the centrifugal force has a negligible effect on the temperature 
for modest rotation rates, say 15-20 r.p.m. In this case, we can ignore the crystal 
and crucible rotations when we solve (2e )  for the temperature, which determines the 
motions due to buoyancy and thermocapillarity. We then simply superimpose the 
melt motions due to the centrifugal force, buoyancy and thermocapillarity . 

In the outer core, vertical wall layer, adjacent Hartmann layers and adjacent 
intersection regions, there is no melt motion driven by the centrifugal force. For r > a 
the melt rotates as a rigid body with the crucible. The centrifugal force drives a very 
strong, clockwise, axially elongated circulation which is entirely inside the free-shear 
layer. However, the free-shear-layer stream function associated with this internal 
circulation goes to zero as R-t f GO. Therefore the jump condition (31) shows that 
this circulation does not affect the radial heat flux through the free-shear layer. There 
is a downward flow inside the free-shear layer for 0 < R < 00 which is absorbing heat 
and becoming hotter, while there is an equal upward flow for -GO < R < 0 which 
is rejecting an equal amount of heat and becoming cooler. Finally the centrifugal force 
drives a much weaker circulation through the inner core, free-shear layer and 
Hartmann layers on the crystal face and on the crucible bottom for r < a. This 
circulation decreases roughly like ES, as B is increased. The magnetic field produces 
a body force that opposes all melt circulations and that increases like B2, as B is 
increased. The magnetic field does not significantly alter the buoyancy or thermo- 
capillarity forces, so they drive circulations that decrease roughly like B-2. The 
magnetic field makes the 0(1) inner core ve independent of z, so that its centrifugal 
force is balanced by a radial pressure gradient. Circulations are driven by the axial 
variation of ve that cannot be balanced by a radial pressure gradient. The axial 
variations of the O( 1) vg are confined to the Hartmann layers, while only the O(M-l)  
inner core v8 varies with z. Therefore the magnetic field alters the centrifugal force 
so that the difference between it and the radial pressure gradient decreases like B-l, 
as B is increased. 

The centrifugal force can produce clockwise or counterclockwise circulations, or 
both, in the inner core, and can produce either a net upward or downward flow inside 
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the free-shear layer. We know how the melt motions due to buoyancy and 
thermocapillarity affect T(r,  z )  for various values of Pe, corresponding to different 
magnetic-field strengths. If the upward or downward flow in the free-shear layer due 
to the centrifugal force is much smaller than the downward flow due to thermo- 
capillarity and buoyancy, then the melt motion due to the centrifugal force has a 
negligible effect on T(r,  z).  For thermocapillarity and buoyancy, the maximum value 
of the A$ across the free-shear layer is 0.15 for Pe < 0.5 (B  2 0.46 T) and is slightly 
higher for larger values of Pe. Hjellming & Walker (1986) present the stream functions 
for the melt motions due to the centrifugal force. To translate their values of A+ for 
the net flow inside the free-shear layer into the present normalization, we multiply 
their values by 

u a2 

UM 
= 6.875Q2a2M-'. 

If the crucible and crystal are rotating in opposite directions at 1.57 rad/s (15 r.p.m.), 
then the maximum values of A+ for the net axial flow inside the free-shear layer due 
to the centrifugal force are 0.0062, 0.0044, 0.0034, 0.0028, 0.0020 and 0.0014 for 
Pe = 1 0 , 5 , 3 , 2 ,  1 and 0.5, respectively. Clearly these values are negligible compared 
with 0.15 and would still be negligible for considerably larger rotation rates. The melt 
motions associated with the crystal and crucible rotations involve relatively large 
radial velocities in the Hartmann layers on the crystal face and on the crucible bottom 
for r < a. These jets have a negligible effect on the temperature because these layers 
are in relatively isothermal regions (see figure 7 ) .  However, these jets strongly affect 
the transport of oxygen from the crucible bottom for T < a and the transport of 
oxygen or dopants to the crystal face. Therefore the flows due to centrifugal pumping 
can generally be ignored in determining the thermally driven motions, but are very 
important for the mass transport. 

In  a typical Czochralski process, the crystal grows at a rate of 0.025 mm/s, and 
the crucible is raised at a rate of 0.004 mm/s in order to keep the free surface at the 
same elevation. For an unsteady flow, we would introduce a time derivative into the 
operator D in (2a, b, e ) .  However, the pull velocity (rate of crystal growth) is so small 
that it is appropriate to neglect this transient term and to treat the melt motion as 
an instantaneous, steady flow. In addition to the instantaneous motions due to the 
centrifugal force, buoyancy and thermocapillarity , we have the instantaneous melt 
motion due to the crystal growth. We solve (2u-c) without the inertial and buoyancy 
terms. We normalize the velocities with the pull velocity, so that the boundary 
conditions are 

v r = O ,  v , = 1  a t z = b  f o r O < r < a ,  (3% b )  

av 
L= 0, v , = O  a t z = b  f o r a < r < l ,  (33% b )  

or = v, = 0 at r = 1, (34% b )  

11, = 0, v, = a2 at z = 0. (35a, b )  

az 

The Hartmann layers match any radial core velocities and satisfy the conditions 
(32a),  (33a),  (35a). The vertical wall layer matches any axial outer-core velocity, 
satisfies the condition (34b), and does not involve any large velocities. The free-shear 
layer matches a jump between the inner- and outer-core axial velocities and does not 
involve any large velocities. With the stream function again defined by (10a, b), the 
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inner- and outer-core stream functions for the instantaneous melt motion associated 
with the crystal growth are 

1 
$. = - [a2b( l - r2 ) - ( l -a2 ) r2 . z ] ,  2b (364  

(36b) 
a2 

2b 
$, = -(b-Z)(l-r2). 

The thermal convection associated with this melt motion is negligible, but the mass 
transport, particularly from the outer to inner cores and from the inner core to the 
crystal, is important. The values (36) must be multiplied by the ratio of U to the pull 
velocity before being added to the other stream functions ( ~ O C ) ,  (27a). 

8. Conclusions 
The heat leaving the melt at the crystal face, plus the heat released during 

crystallization, equals the heat lost by the crystal due to radiation and due to 
conduction to the argon gas. This balance determines the crystal growth rate. In  a 
Czochralski puller, the electric current to the heater is varied during the growth of 
a crystal in order to achieve a constant growth rate. Therefore the heat leaving the 
melt at the crystal face is a key variable in the process control. The dimensional total 
heat transfer rate from the melt at the crystal face is Q, qL2, where the dimensionless 
heat transfer rate Q, is given in table 2 for each case considered here. Since 
temperatures and heat losses for the crystal surface have been studied both 
experimentally and numerically, reasonably accurate estimates of the heat transfer 
rate from the melt at the crystal face, for a given growth rate and for a given stage 
in the growth of the crystal, might be possible. The values of &, in table 2 then give 
the values of q and AT to be used in the non-dimensionalization. The heat flux at  
the vertical crucible wall, q, should still be used to define the dimensionless variables 
because this gives the boundary condition (7c),  which leads to dimensionless stream 
functions that are relatively insensitive to changes in several parameters. 

The dimensionless heat transfer rate into the melt at the vertical crucible wall is 
2nb = 6.20, 3.06 and 1.49 for b = 0.9875, 0.4875 and 0.2375, respectively. The ratio 
of Q, to one of these values gives the fraction of the heat entering a t  r = 1 that reaches 
the crystal face. Cases 1-3 in table 2 involve changes in C, for constant b and Pe. 
As C, increases, more heat is lost through the free surface, so that less reaches the 
crystal. Cases 4-6 involve changes in b for constant Pe and with C,  from the radiation 
calculation. As b decreases, there is less heat input at the vertical crucible wall, but 
more through the bottom. Cases 4 and 7-16 involve changes in Pe (or B)  for constant 
b and C,. The variation here follows curve 2 in figure 7 ( d ) .  As Pe increases from zero 
(B  decreases from a), the free surface gets hotter and loses more heat, so that less 
heat reaches the crystal. However, as Pe passes 7 ,  the free-surface temperature begins 
to drop, so that Q, increases slightly. 

The present analysis assumes that the axial magnetic field is sufficiently strong that 
the inertial terms on the left-hand sides of (2a, b) are negligible everywhere and that 
the viscous terms are only significant in the boundary and free-shear layers. For the 
isothermal melt motion driven by the crystal and crucible rotations, Hjellming & 
Walker (1986) conclude that this assumption is invalid for B < 0.05 T, is valid for 
B 2 0.2 T and gives qualitatively correct results for B = 0.1 T. Comparison of the 
present predictions and the results of numerical analyses, which include inertial and 
viscous effects everywhere, leads to the same conclusion for the buoyant and 
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Case Co Pe Qs 

1 0  0 3.99 
2 0.5 0 3.12 
3 1  0 2.26 
4 0.66 0 2.85 
5 0.232 0 1.86 
6 0.101 0 1.14 
7 0.66 1 2.79 
8 0.66 2 2.73 
9 0.66 3 2.61 

10 0.66 4 2.54 
11  0.66 5 2.48 
12 0.66 6 2.44 
13 0.66 7 2.42 
14 0.66 8 2.42 
15 0.66 9 2.43 
16 0.66 10 2.46 

TABLE 2. Dimensionless heat transfer rate from the melt at the crystal face &,. C, = 0.493 and 
a = 0.4 for every case; b = 0.9875 and D, = -Do = 0.25 for every caae except for case 5 
(b  = 0.4875, Do = 0 and D, = 0.25) and case 6 ( b  = 0.2375, Do = 0 and D, = 0.5). 

thermocapillary convections. Langlois & Lee (19833) present streamlines for the melt 
motions without rotation of the crystal or crucible, with the present values of a and 
dy/dT*, with b = 0.66, and with B = 0,0.05 or 0.1 T. For B = 0, the flow is primarily 
a buoyant convection which fills the entire melt. There is some thermocapillary 
pumping over the entire free surface, so that the first streamline is closer to the free 
surface than it is to the bottom. The only effect of the large free-surface temperature 
gradient at r = a is that two of the twenty-two streamlines are pulled to the crystal 
edge by thermocapillarity. However, this is a very local effect near the crystal edge. 
For b = 0.05 T, the magnetic field is beginning to prevent penetration of the 
circulation into the region under the crystal. The concentration of the upward flow 
into the vertical wall layer is evident. The thermocapillary acceleration of the flow 
due to the large free-surface temperature gradient affects every streamline near r = a. 
This acceleration produces a jet near the crystal edge and this jet is carried by inertia 
to r = 0.5a, so that inertial effects are still important. For B = 0.1 T, the outer-core 
convection does not penetrate inside r = 0 . 8 ~ .  This suggests that the free-shear layer 
has emerged and has a thickness of 0.2a = 0.08, which is comparable to M* = 0.05 
for this B. The strong, axially elongated thermocapillary convection at r = a is clearly 
visible. The flow executes abrupt 90" turns near the crystal edge, indicating that the 
electromagnetic body force overwhelms the inertial 'force '. For this case, we conclude 
that the present analysis is probably reasonably accurate for B 2 0.1 T, with the 
accuracy improving as B increases. 

Langlois & Lee (1983b) also present results for the same conditions, except that 
a = 1.41 x K-l, i.e. ten times the value used here and the value for their 
'low-buoyancy ' case. In the present analysis, there would be two effects of increasing 
the value of a (Hjellming & Walker 1987). First the value of B that would correspond 
to a given value of N or Pe increases. For a ten-fold increase in a, the values of B 
in table 1 must be multiplied by 1.78 or 3.16 to obtain the same value of N or Pe, 
respectively. Here we are concerned with the minimum B for which the inertialess 
analysis applies, so that we would expect this minimum B to increase by a factor 
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of 1.78. The high-buoyancy results of Langlois & Lee (19833) for B = 0.1 or 0.2 T 
correspond very closely to their low-buoyancy results for B = 0.05 or 0.1 T, re- 
spectively. For the high-buoyancy case, we conclude that the present inertialess 
approach is reasonably accurate for B 2 0.2 T. Kim & Langlois (1986) use a 
temperature difference between the crystal and crucible of AT = 18 K, rather than 
the 100 K used in table 1 here or the 88 K used by Langlois & Lee (19833). If the 
characteristic temperature difference is actually this small, then the a(AT) for high 
buoyancy is only 1.8 times that used here, so that the values of B in table 1 need 
only be multiplied by 1.16 or 1.34 for the same N or Pe, respectively. 

The second effect of changing a is to change Q. With a multiplied by ten, Q is 
multiplied by 0.1, and the thermocapillary stream function (27a) is multiplied by 0.1 
before being added to the buoyancy stream function (lOc). For b = 0.9875 and 
Pe 4 1 ,  this would eliminate the axially elongated thermocapillary convection at 
r = a (Hjellming & Walker 1987). However, the high-buoyancy results of Langlois 
& Lee (1983b) for B = 0.2 T clearly exhibit an axially elongated thermocapillary 
convection at  r = a, which is a third of the total flow. For their case, b = 0.66 and 
Pe = 27. As b is reduced from 0.9875 to 0.66, the buoyancy circulation is reduced by 
a factor of 0.45, while the thermocapillary convection remains essentially unchanged. 
As Pe increases from 0 to 10, curve 1 in figure 7 ( d )  indicates that the free-surface 
temperature gradient at  r = a increases by a factor of nearly three. Since this curve 
has levelled off by Pe = 10, we can expect a comparable factor at  Pe = 27. Therefore, 
relative to figure 6 (a), if we reduce Q by a factor of 0.1, reduce b from 0.9875 to 0.66 
and increase P e  from 0 to 27, then the ratio of the thermocapillary to buoyant 
convections has only been reduced by 33 % , and we would still expect an axially 
elongated thermocapillary convection at r = a. 

The concentration C(r,  z )  of oxygen or of a dopant such as boron is governed by 
(2e) with T replaced by C and with Pe replaced by Pe,, which is the PBclet number 
for mass transport. This mass PBclet number is given by the definition of Pe with 
the thermal diffusivity (klpc,) replaced by the appropriate diffusion coefficient. The 
diffusion coefficient for oxygen or boron in silicon is 8 x or 2.4 x loT3 times the 
thermal diffusivity of silicon, respectively (Lee, Langlois & Kim 1984; Kim & 
Langlois 1986). When the P6clet numbers in table 1 are divided by either of these 
factors, the resultant values of Pe, are very large. Therefore, asymptotic solutions 
for Pe, 4 1 are appropriate, and diffusion is negligible outside the boundary and 
free-shear layers. Oxygen enters the melt from the crucible and either evaporates 
from the free surface or is incorporated into the crystal. Without a magnetic field, 
convective velocities which are much larger than the present U and turbulence 
effectively mix the melt, so that there is never a large concentration variation in the 
melt. Without turbulence and with magnetically suppressed convection, large 
concentration variations can develop in a magnetic Czochralski puller. The present 
solutions indicate some of the factors that affect these concentration variations. 

None of the 0(1) flow enters the Hartmann layer on the crucible bottom for 
a < r < 1, and this layer merely matches the radial velocity due to buoyancy and 
thermocapillarity . Since diffusion is confined to boundary layers, the oxygen from 
the crucible bottom cannot reach the main O( 1 )  flow in the outer core. Therefore the 
oxygen concentration in the Hartmann layer builds up to the saturation point, and 
no more oxygen enters the melt from the bottom. This conclusion is confirmed by 
experiments which show that a light-brown layer of silicon oxides develops on the 
crucible bottom with a strong axial magnetic field. No such layer occurs without a 
magnetic field. 
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All the buoyant convection and part of the thermocapillary convection flow 
vertically upward inside the vertical wall layer at r = 1. The high-velocity flow inside 
this layer sweeps away the entering oxygen before its concentration builds up. 
Therefore the melt dissolves the vertical crucible wall throughout the growth of a 
crystal. This conclusion is also confirmed by the same experiments which show that 
the vertical crucible wall remains clean and is rather deeply eroded at the end of the 
process. 

The oxygen that does not evaporate from the free surface enters the crystal so that 
the evaporation rate is very important. With only buoyancy, none of the O( 1) flow 
enters the free-surface Hartmann layer, so that an oxygen-depleted layer would 
develop here and evaporation would effectively cease, The thermocapillary convec- 
tion pulls part of the flow from the vertical wall layer into the free-surface Hartmann 
layer, where it can lose much of its oxygen by evaporation. The balance between 
buoyant and thermocapillary convection is clearly important in determining the 
fraction of the oxygen that evaporates. In  figure 6(a) for P e  < 1, every streamline 
that enters the inner core beneath the crystal face has traversed the entire free 
surface, so that we would expect a low oxygen concentration as this flow enters the 
inner core. In figure 8 ( b )  for Pe = 10, half of the flow entering the inner core has 
traversed the entire free surface, while the other half has only been inside the 
free-surface Hartmann layer for 0.4 < r < 0.5. If a is in fact ten times the value used 
here, then the fraction of the thermally driven motion entering the free-surface 
Hartmann layer and losing oxygen by evaporation is greatly reduced (Hjellming & 
Walker 1987). 

Mass transport in the free-shear layer is very complex. There are three superposed 
flows here : (i) the elongated, counterclockwise thermocapillary circulation located on 
the outer side of the free-shear layer, (ii) the elongated, clockwise circulation due to 
centrifugal pumping and located on the inner side of the free-shear layer, and (iii) 
the uniform inward flow due to crystal growth. The competition of the two elongated 
circulations is demonstrated by the numerical results presented by Langlois, 
Hjellming & Walker (1987), who do not include crystal-growth effects, but do include 
inertial and viscous effects. As a fluid element moves from the outer to inner cores, 
it is first swept upward to the free surface near the crystal edge, it is then swept 
downward to the crucible bottom at T = a, and finally is swept up to the crystal face 
near T = a. The rising and falling columns of fluid are sufficiently close for significant 
diffusion between them. As the fluid element approaches the crystal face, it may move 
inward inside the crystal-face boundary layer and be incorporated into the crystal, 
or it may move into the central part of the inner core. This depends on the rotation 
rates of the crystal and crucible (Hjellming & Walker 1986). The analysis of the 
mass-transport problems based on the present solutions for the melt motions will be 
presented in a future paper. 
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